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Abstract We study the pricing and hedging of contingent claims that are subject to Event
Risk which we define as rare and unpredictable events whose occurrence may be correlated
to, but cannot be hedged perfectly with standard marketed instruments. The super-replication
costs of such event sensitive contingent claims (ESCC), in general, provide little guidance
for the pricing of these claims. Instead, we study utility based prices under two scenarios of
resolution of uncertainty for event risk: when the event is continuously monitored, or when
it is revealed only at the payment date. In both cases, we transform the incomplete market
optimal portfolio choice problem of an agent endowed with an ESCC into a complete market
problem with a state and possibly path-dependent utility function. For negative exponential
utility, we obtain an explicit representation of the utility based prices under both information
resolution scenarios and this in turn leads us to a simple characterization of the early resolution
premium. For constant relative risk aversion utility functions we propose a simple numerical
scheme and study the impact of size of the position, wealth and expected return on these
prices.
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Introduction

We study the pricing and hedging of contingent claims that are subject to Event Risk. We define
event risk as rare and unpredictable events whose occurrence may be correlated with standard
marketed securities. Typical examples of such events are default, natural catastrophies, death,
or the prepayment of mortgages. Thus, our analysis has implications for the pricing of a
wide range of securities such as credit derivatives, vulnerable derivatives, Mortgage-Backed
Securities and catastrophe, life or unemployment insurance.

We assume that event risk is not hedgeable using market instruments. Formally we model
the occurence of such events as the first jump of a point process whose intensity depends
only on the information generated by marketed securities (e.g. stocks and bonds). We model
the latter using a standard Brownian motion model of financial security markets (as pre-
sented in [33]). Thus, even though in our model the underlying market for traded securities
is complete, contingent claims with event sensitive payoff (ESCC) are not perfectly hedge-
able. In fact, absence of arbitrage only requires the prices of such claims to fall within an
interval, whose lower and upper bound correspond to the sub-replication cost (lower hedg-
ing price) and the super-replication cost (upper hedging price) respectively (e.g. [33]). We
show that for ESCCs these upper and lower hedging prices are uninformative. Consider
for example an event digital, that pays one dollar if the event occurs prior to the terminal
time and nothing otherwise. The lower hedging price is zero and the upper hedging price
is that of a risk free zero bond. A more general result along these lines is provided below.
It demonstrates that pure arbitrage arguments, in general, provide little guidance for the
pricing of ESCCs.1 We thus study an alternative pricing rule that embeds the pricing prob-
lem into the agent’s global portfolio/consumption decision: utility based pricing. Consider
an agent who commits to sell an ESCC and chooses his optimal portfolio to maximize his
expected utility of terminal wealth. The utility based selling price of the contingent claim
is defined as the smallest amount, which, when added to his initial capital, allows him to
achieve at least as high a level of expected utility as he would have obtained without selling
the claim.2

Frequently, in real-world applications, the payment date does not coincide with the event
date: the event usually happens prior to the payment date and investors do not monitor
the event continuously, but it is revealed only at the payment date. For example, when
investors purchase principal only (PO) or interest only (IO) Mortgage-Backed securities,
the payments are contingent on the occurrence of prepayments prior to the payment date.
While pool managers presumably monitor prepayments continuously, investors, in gen-
eral, do not. To investigate the impact of the temporal resolution of uncertainty on the
pricing of ESCC, we thus consider two alternative timing scenarios for event-uncertainty.
Under ‘early resolution’ the investor has continuous access to information about the event,
i.e. sees the event when it happens, whereas under ‘late’ resolution of uncertainty, the

1 This is reminiscent of [6] who show that, in the presence of transaction costs, the minimal amount necessary
to dominate the pay-off of a call option is the value of the underlying itself. Other papers studying almost sure
hedging in incomplete markets, albeit with different forms of incompleteness, include [4], [38], [40] and [32].
2 The utility based buying price is defined similarly. Utility based pricing has been used in the literature on
transaction costs by [8,17,23] and [9] among others; and on incomplete/constrained markets by [10,21,37]
and [43]. See [22] for a survey.
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investor learns only at the payment date whether the event has occurred previously or
not.

Our results show that the temporal resolution of uncertainty has no impact on the arbitrage
bounds and are therefore consistent with [47] who shows that in complete markets, the
temporal resolution of uncertainty does not affect prices. However, early resolution does
affect the utility based prices because it allows the investor to re-optimize his portfolio at the
event time. Such an impact of the temporal resolution of uncertainty on preference dependent
prices was also brought to light, albeit in different models, by [46] and [20]. We show that,
for both information resolution scenarios, the incomplete market problem faced by an agent
endowed with an ESCC can be recast into an equivalent complete market problem where the
agent is endowed with a different, state and, for the early resolution case, path-dependent
utility function. The path-dependence of the modified utility function in the early resolution
case, captures the uncertainty due to the non-hedgeable event risk. It basically acts as an
endogenous liquidity constraint on the agent who, at any time, needs to be prepared to absorb
the wealth impact of an event. In effect, the early release of information affects the dynamic
trading strategy and thus the future wealth of the agent in a way that cannot be offset prior
to the event (because markets are incomplete with respect to event risk). In this framework
the agent is always better off with early resolution of uncertainty and is thus willing to pay
a premium for early resolution. This implies, for example, that if we assume that mortgage
prepayments are (at least partially) unhedgeable, pool managers could sell information about
prepayments to their clients prior to the payment date.

To determine the magnitude of the early resolution premium and obtain some compar-
ative statics on early and late resolution utility based prices, we study two special cases of
utility functions, namely negative exponential (CARA) and power (CRRA) utility functions.
In the exponential case we obtain explicit representations for the utility based prices under
both resolution scenarios. Under early resolution of uncertainty, the utility based prices are
solutions to a nonlinear recursive equation whereas under late resolution, the utility based
prices are given by the present value of an event insensitive contingent claim which pays the
certainty equivalent of the ESCC conditional on the market filtration. In both cases, utility
based prices are independent of wealth, a special feature of the negative exponential utility
function. While wealth effects are absent for CARA agents, the early resolution premium
is nevertheless positive due to the impact of the event on the hedging demand induced by
the ESCC. Thus, a sufficient condition for CARA investors to be indifferent to the tem-
poral resolution is that both the payoff of the ESCC and the probability of the event are
independent of the market filtration. Note that similar results do not hold for typical utility
functions such as power utility function, since holding the ESCC induces wealth effects for
the investor.

In the CRRA case and under Markovian assumptions on the financial market model, we
propose a simple numerical technique to compute both early and late resolution prices and
provide numerical applications for several typical examples including defaultable bonds,
vulnerable derivatives3 and credit derivatives. We study the impact of size of the position,
wealth, expected return and volatility on utility based prices. Our results show that standard
contingent claim pricing intuition does not apply in the presence of event risk. For example,
vulnerable put option buy prices are decreasing in the drift of the underlying stock, while

3 Vulnerable options have been studied by [31] and [26]. However, in these papers the default event is modeled
as the first passage time of the writer’s assets value (assumed to be a diffusion) at some boundary. Defaultable
contingent claims thus become default free knock-out barrier options and since every Brownian stopping time
is predictable, default of the writer is a predictable process, i.e. does not come as a surprise.
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vulnerable call option buy price may be either increasing or decreasing depending on the
moneyness of the option.

We find that for CRRA investors, the early resolution premium is typically very small
and nonlinear in wealth. It vanishes both at zero where all prices, early and late resolution,
approach the arbitrage bounds and at infinity where both prices approach the ‘risk neutral’
price which is obtained by risk adjusting the marketed sources of risk while keeping the
same functional form for the intensity. Note that since it may be a function of traded assets,
the probability of an event will, in general, be different under this risk neutral measure. As
was shown in [1], this risk neutral price depends neither on the investor’s initial capital nor
utility function and agrees with the common limit of (i) the utility based buying and selling
prices as initial wealth increases and (ii) the utility based unit prices as the size of the position
decreases (under both resolution).4 Our numerical results suggest that utility based prices
converge quickly as a function of exposure (in percentage of wealth) to the risk neutral price
and therefore provide some rational for the approach adopted by many practitioners, who
(i) price and hedge credit derivatives using historical default probability estimates, and (ii)
impose limits on the exposures to specific counterparties [2]).

Liu et al. [42] also investigate Event Risk. However, their definition of Event risk is
different from ours. In their paper, events are jumps in the underlying traded asset prices
and they focus on optimal portfolio choice. Assuming an affine structure and CRRA utility
they obtain closed-form solutions for the portfolio choice problem. In contrast, we define
events as extraneous to the underlying traded security market. Our focus is on the incom-
pleteness generated by such events and on the pricing of securities with payoff that are
either explicitly (e.g. insurance) or implicitly (e.g. vulnerable derivatives) contingent on the
event.

Collin-Dufresne and Hugonnier [1] is closest to our work. They study the existence and
qualitatite properties of utility based prices in the presence of extraneous event risk for
general utility functions. Instead, we focus here on explicit computation and characterization
of the utility based prices for a specific type of event sensitive contingent claims. We also
investigate the relevance of temporal resolution of uncertainty for such claims. Duffie et al.
[15] analyze a reduced-form model of default risk and show that resolution of uncertainty
may affect the prices of defaultable securities if the recovery process is such that the price
solves a nonlinear recursive equation. Their result has some relation to our treatment of the
CARA case, except that in our model the non-linearity is due to risk aversion (in a sense
endogenous), rather than to the assumed recovery scenario. Other related literature include
the reduced-from, intensity-based models of default risk among which [27], [29] and [16].
All use point processes to model the default event, but focus mainly on pricing defaultable
bonds, taking the default intensity under some equivalent martingale measure as given (i.e.
avoiding the question of market incompleteness).

The remaining of the paper is organized as follows. First we present the framework and
recall some results on almost sure hedging. Then we give the reformulation of the incomplete
market portfolio choice problem which allow to solve for Utility based prices of ESCC.
Section 2 presents the continuous revelation of uncertainty, whereas Sect. 3 presents the late
resolution case. Section 4 applies our results to negative exponential utility and Sect. 5 to
power utility function. We conclude in Sect. 6.

4 This price was also central to the analysis of [28] who obtain it as a result of an APT-like diversification
argument.
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1 The economy

1.1 Information structure

We consider a continuous time financial market model on the finite time span [0, T ]. The
uncertainty is represented by a probability space (�, H, H , P) on which are defined an
n-dimensional standard Brownian motion B and a point process N . The Brownian motion
represent innovations in traded securities prices while the point process models events whose
occurrence may be influenced (through the intensity of the point process), but not completely
determined, by market factors. The filtration

H � {H (t) : t ∈ [0, T ]} , (1)

is the usual augmentation of the filtration generated by (B, N ) and we assume that H =
H (T ). The usual augmentation of the natural filtration generated by B will be our reference
filtration. It is denoted by F := {F (t)} and we let F := F (T ).

All statements involving random variables and/or processes are understood to hold either
almost surely or almost everywhere on [0, T ]×� depending on the context. In what follows,
the point process will be assumed to admit a bounded F-predictable intensity process under
the objective measure. In other words, we shall from now on assume that there is a strictly
positive F-predictable and bounded process λ such that the compensated sum of jumps

M(t) �

⎛
⎝N (t) −

t∫

0

λ(s)ds

⎞
⎠ , (2)

is a uniformly integrable (H, P)-martingale. Such a point process is sometimes referred to
as a Cox Process or a doubly stochastic point process.

1.2 Traded securities

There is a single perishable good (the numéraire) in units of which all quantities are expressed.
The financial market, denoted by M, consists in n + 1 long lived securities. The first security
is locally riskless and pays no dividends. It is referred to as the bank account and its price S0

has dynamics

d S0(t) = r(t)S0(t)dt, S0(0) = 1, (3)

for some non negative interest rate process r . The remaining n securities are risky. We shall
refer to them as the stocks and assume that the vector S of stock price processes obeys the
linear stochastic differential equation

d S(t) = diag(S(t)) (a(t)dt + σ(t)dB(t)) , S(0) � S ∈ (0,∞)n, (4)

for some vector valued appreciation rate process a and some (n ×n)-matrix valued volatility
process σ .

Assumption 1 The coefficients are assumed to be F-progressively measurable and uniformly
bounded processes and furthermore, the volatility process σ is assumed to be invertible almost
everywhere with a uniformly bounded inverse.

The conditions imposed on the coefficients of the model by Assumption 1 imply that the
risk premium process
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ξ(t) � (σ (t))−1 (−r(t)1 + a(t)
)
, (5)

where 1 = (1, . . . , 1) denotes a unit vector in R
n , is uniformly bounded. The non negative

exponential local martingale Z0 defined by

Z0(t) � exp

⎛
⎝−

t∫

0

ξ(s)∗dB(s) − 1

2

t∫

0

‖ξ(s)‖2 ds

⎞
⎠ , (6)

where ‖·‖ denotes the Euclidean norm, is thus a strictly positive and uniformly inte-
grable (H, P)-martingale and the formula P0(A) := E[1A Z0(T )] defines a probability
measure which is equivalent to the objective probability measure and under which the
process

W (t) � B(t) +
t∫

0

ξ(s)ds, (7)

is an n-dimensional standard H-Brownian motion by Girsanov theorem. Under this new
probability measure, the stock price dynamics are given by

dS(t) = diag(S(t))
(
r(t)1 dt + σ(t)dW (t)

)
.

The discounted stock price process S/S0 is thus an (H, P0)-martingale and this justifies the
fact that the probability measure P0 is referred to as a risk neutral or equivalent martingale
measure for the financial market model.

Remark 2 Under our assumptions, the process Z0 is not only an H-martingale but also an
F-martingale under P so that P0 is not only equivalent to P on H but also on F and the
process W is both an H and an F-Brownian motion under P0. As a result, if the information
available to agents was restricted to that generated by asset prices then P0 would be the
unique equivalent martingale measure and markets would be complete with respect to F (see
Lemma 5 below). On the contrary, when dealing with the finer information structure H the
measure P0 no longer constitutes the unique equivalent martingale measure and markets are
in general incomplete with respect to the enlarged filtration H.

1.3 Event sensitive contingent claims

In addition to being able to trade based on the extra information represented by the point
process, we assume that agents can trade event sensitive contingent claims (ESCCs). These
specify payoffs contingent on a non market event whose occurrence we model as the first
jump time

τ � inf {t ∈ [0, T ] : N (t) �= 0} , (8)

of the point process. Let p ∈ (1,∞) be a fixed constant throughout the paper, introduce the
space of (equivalence classes of) random variables

L � Lp (
�, H , P0) ≡ {

X is H − measurable with E0|X |p < ∞}
, (9)

and denote by E the set of càdlàg semimartingales e whose bilateral supremum lies in the
space L . We then define an ESCC as follows:
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Definition 3 An event sensitive contingent claim is defined by a pair (A, R(·)) where A is
a non negative F -measurable random variable in L which specifies the payoff at time T on
the set {τ > T } and R(·) is a non negative F-adapted process in E which specifies the payoff
at time τ on the set {τ ≤ T }.
As is easily seen, the overall cumulative income process associated with a long position in
an arbitrary ESCC is the càdlàg semimartingale e ∈ E defined by

e(t) � 1{t≥T }∩{τ>T } A + 1{τ≤t} R(τ ). (10)

ESCCs specify payoffs that are measurable with respect to the market filtration F but whose
actual payment is conditional on the realization of a non market event modeled by an unpre-
dictable stopping time τ . This definition encompasses a variety of event sensitive contingent
claims such as:

(a) Defaultable bonds. A zero-coupon bond with face value $1 and maturity T issued by a
firm which may default at time τ corresponds to A = 1 and either R(t) = (1 − δ) or
(D0 := 1/S0 is the discount factor)

R(t) = (1 − δ) · E0
(

D0(T )
D0(t)

∣∣∣ F (t)
)

,

for some δ ∈ [0, 1] depending on whether the recovery is a fraction of the bond’s face
value or a fraction of an otherwise identical default free bond.

(b) Vulnerable derivatives. A vulnerable derivative is a contingent claim issued by a coun-
terparty which may default at any time prior to maturity. Assuming that in bankruptcy
the buyer receives a fraction of an otherwise identical default free contingent claim, a
vulnerable call with strike K on the nth-stock would correspond to A = (Sn(T ) − K )+
and

R(t) = (1 − δ) · E0
(

D0(T )
D0(t) (Sn(T ) − K )+

∣∣∣ F (t)
)

,

for some fractional loss quota δ ∈ [0, 1]. Johnson and Stulz [31] study this type of
defaultable options in a model where default is triggered when the seller’s assets value
reaches some fixed barrier.

(c) Credit derivatives. The buyer of a credit derivative pays an up front free in return for
a contractual protection against default on some security. Termination values for such
contracts come in multiple forms such as (i) digital cash payment, (ii) par value minus
post-default market value, (iii) initial price minus post-default market value and (iv)
normalized price (in general the price of an equivalent default free security) minus
post-default market value. See [50] for a thorough description. Assuming that the post-
default value is set to be a fraction of an equivalent default free security then case (iv)
corresponds to

R(t) = (1 − δ) · E0
(

D0(T )
D0(t) R̄

∣∣∣ F (t)
)

, (11)

and A = 0 for some δ ∈ [0, 1] where R̄ is the F -measurable payoff of the corresponding
default free security while case (iii) corresponds to

R(t) =
(

P − δ · E0
(

D0(T )
D0(t) R̄

∣∣∣ F (t)
) )+

,

and A = 0 for some δ ∈ [0, 1] where P is the price at which the buyer purchased the
underlying credit risky security at time 0.
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(d) First to default contracts. A first to default contract is virtually the same as a credit
derivative except that termination is triggered by the occurrence of the first in a pre-
specified list of credit events which are not necessarily default. See [13] for a thorough
discussion.

(e) Credit swaps. A credit swap is a variation of the basic credit derivative in which the
protection buyer does not pay the protection seller up front but either continuously or at
discrete points in time until the occurrence of the credit event.

(f) Life insurance. A life insurance contract gives right to a payment R(τ ) which can be
either fixed (as is the case for annuities) or random (as is the case for equity-linked
contracts) at the stopping time τ if before the term of the contract and zero otherwise.
The corresponding ESCC is thus of the form (0, R(·)) for some arbitrary F-measurable
process R ∈ E .

In all of the above the examples we assume that the fractional loss quota is constant. This
is merely for simplicity of exposition since in each case we can assume that it is stochastic
provided that it is measurable with respect to the filtration generated by the Brownian motion.

It is also worth noting that in most of the above examples the ESCC’s payoffs are ordered
in the sense that either, as in examples (a) and (b) we have

R(t) ≤ E0
(

D0(T )
D0(t) A

∣∣∣ F (t)
)

. (VD)

(condition VD for Vulnerable Derivative) or the reverse inequality as in examples (c) and
(d) (condition CD for Credit Derivative). In what follows we shall always assume that either
one of these conditions is satisfied. Also in most cases presented above, the recovery process
R corresponds to the value process of some F-measurable trading strategy which can be
identified with an F -measurable terminal value R(T ). In that case the conditions VD and
CD are equivalent to the terminal value constraints R(T ) ≤ A and R(T ) ≥ A, respectively.

1.4 Admissible trading strategies

Consider a small investor initially endowed with x units of the consumption good and a
cumulative income process e. A trading strategy is an H-predictable and almost surely square
integrable process {θk : 1 ≤ k ≤ n} of amounts invested in each of the available stocks.
Let X denote the corresponding wealth process. If the strategy is used in a self-financing
way, then θ0 := X − θ∗1 is invested in the bank account and, in accordance with the model
set forth in the previous sections, the wealth process obeys the linear stochastic differential
equation

d X (t) = r(t)X (t)dt + θ(t)∗σ(t) (dB(t) + ξ(t)dt) + de(t), (12)

with initial condition x . In what follows the self-financing condition will always be in force
and so we may associate to any triple (x, e, θ) a value process given by the solution X =
X x,e,θ to Eq. (12).

Definition 4 A trading strategy is said to be admissible and we write θ ∈ 	 if the minimal
element inf X θ (t) of the wealth process X θ := X0,0,θ associated with the triple (0, 0, θ) lies
in the space L defined by (9).
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Given an arbitrary endowment pair (x, e) and an arbitrary trading strategy θ , Itô’s lemma,
(7) and (12) show that we have

D0(t)X (t) −
t∫

0

D0(s)de(s) = x +
t∫

0

D0(s)θ(s)∗σ(s)dW (s). (13)

As is easily seen, the process on the righthand side of (13) equals x +D0 X θ and is an (H, P0)-
local martingale. If moreover θ ∈ 	 then this local martingale is also uniformly bounded
from below by a P0-integrable random variable, hence a supermartingale by Fatou’s lemma
and consequently, we obtain that

E0

⎛
⎝D0(T )X x,e,θ (T ) −

T∫

0

D0(t)de(t)

⎞
⎠ ≤ x, (14)

holds for all (x, e, θ) ∈ R × E × 	. Equation (14) is referred to as a static budget constraint
and excludes any arbitrage opportunity from the market (see [19] for the original argument).

1.5 Arbitrage pricing of contingent claims

In this section, we shortly discuss arbitrage bounds for the value of an arbitrary cumulative
income process e. As is well-known (see for example [32]), the assumption of absence of
arbitrage imposes that the value of such a contingent claim falls in an interval I (e) whose
endpoints correspond to the so-called hedging prices. The upper bound is the upper hedging
price û(e) which corresponds to the smallest initial wealth endowment necessary to cover a
short position in the claim. Symmetrically, the lower bound corresponds to the lower hedging
price ǔ(e) which is the largest initial debt that can be contracted along with a long position
in the claim without going bankrupt.

In mathematical terms, the upper and lower hedging price of a cumulative income process
e ∈ E are respectively defined by

û(e) � inf
{

x ∈ R : ∃ θ ∈ 	 such that X x,−e,θ (T ) ∈ R+
}
, (15)

and −ǔ(e) := û(−e) with the convention that inf ∅ = ∞. For event insensitive contingent
claims these two are equal and coincide with the expectation of the discounted cumulative
income process under the risk neutral probability P0 and as a result markets are complete
with respect to F.

Lemma 5 Let e denote an arbitrary F-adapted process in E . Then we have

ǔ(e) = û(e) = u0(e) � E0

⎛
⎝

T∫

0

D0(t)de(t)

⎞
⎠ , (16)

and there exists an admissible trading strategy θ ∈ 	 such that the terminal value of the
wealth process associated to the triple (u0,−e, θ) is equal to zero.

Consider now an event sensitive contingent claim (A, R(·)) with corresponding cumulative
income process e defined by (10) and assume that

R(t) = E0
(

D0(T )
D0(t) R̄

∣∣∣ F (t)
)

, (17)
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for some F -measurable random variable R̄ ∈ L+ with R̄ ≤ A (condition VD). It is easy
to see that the arbitrage free price of the event insensitive contingent claims with respective
payoff A and R̄ at the terminal time provide upper and lower bounds for the hedging prices
of the ESCC:

u0(R̄) � E0(D0(T )R̄
) ≤ ǔ(e) ≤ û(e) ≤ E0 (D0(T )A) � u0(A). (18)

The following result establishes that, under the present assumptions, the above price bounds
are tight in the sense that the outer inequalities in (18) actually hold as equalities.

Proposition 6 Let (A, R(·)) be an ESCC, denote by e(·) the corresponding cumulative
income process and assume that R(·) is given by (17) for some F -measurable random
variable R̄ ∈ L+. Under condition VD we have

u0(R̄) = ǔ(e) ≤ u0(e) ≤ û(e) = u0(A). (19)

If on the contrary condition CD holds true, then Eq. (19) remains valid if we interchange the
role of the F -measurable random variables R̄ and A.

Proof See [1] �
The above proposition points to the weaknesses of the almost sure hedging criterion when

dealing with event sensitive contingent claims and is reminiscent of the well-known fact that
in a model with proportional transaction costs the cheapest way to hedge a call option is to
buy the underlying and hold it until the option’s maturity (see [6]). Specializing this result to
the different types of ESCC discussed in Sect. 1.3, we obtain:

(a) Vulnerable derivatives. Consider the case of a European derivative (possibly a bond) with
F -measurable payoff A ∈ L+ at the terminal time and settlement payment

R(τ ) = (1 − δ) · E0
(

D0(T )
D0(t) A.

∣∣∣ F (t)
)∣∣∣

t=τ
,

for some fractional loss quota δ ∈ [0, 1] if the seller defaults before the maturity of the
contract. Applying the result of Proposition 6 to this contract we obtain the following
arbitrage free interval

I ((A, R(·)) = (u0 ((1 − δ)A) , u0(A)) .

In particular, in the case of zero recovery (δ ≡ 1) the arbitrage free interval becomes
trivial: zero on the one hand and the complete market, default free price u0(A) on the
other.

(b) Credit derivatives and First to default contracts. If we assume that the post-default market
value is set to a constant fraction of an otherwise equivalent default free security as in
(11), then the recovery process R(·) satisfies the requirement of Proposition 6 and the
corresponding arbitrage free interval is given by

I ((0, R(·))) = (0, R(0)) = (
0, u0

(
(1 − δ)R̄

) )
.

In particular, it follows from the above expression that the maximal price that a protection
buyer can afford to pay for the contract at time 0 while being sure to end up solvent at
the terminal time is zero.

The proposition and examples show that the typical price interval obtained from arbitrage
consideration only can be very wide. Almost sure hedging is therefore not a reasonable
criterion for the pricing of event sensitive contingent claims in a framework with event risk.
Instead, we study in the next section an alternative pricing rule: utility based pricing.
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2 Utility based pricing

As shown by the previous result, the arbitrage free interval associated with an event sensitive
contingent claim can be very wide and is even trivial in some cases. In such a situation, the
problem becomes that of selecting a price and corresponding hedging strategy. [18] shows
that when a particular contingent claim is not marketed one cannot assume, except in some
special cases (e.g. negative exponential utility, see Sect. 4), that the pricing and hedging
problem can be separated from the rest of the agent’s portfolio. Motivated by this insight,
we now study a pricing rule that embeds the pricing and hedging problem into the agent’s
portfolio choice problem.

2.1 Price definition and general properties

We consider an economic agent endowed with an initial capital x and whose preferences over
terminal consumption are represented by an expected utility functional X �→ EU(X). The
strictly increasing, strictly concave and continuously differentiable function U : (α,∞) → R

with α ∈ {−∞, 0} is referred to as the agent’s utility function and will be assumed to satisfy
the following:

Assumption 7 The utility function U satisfies the Inada conditions at both α and infinity
and has reasonable asymptotic elasticity (see [48] for details on this condition).

Suppose that in addition to his initial capital x ∈ R, the agent is endowed with an ESCC
and denote by e ∈ E the corresponding cumulative income process. Given this endowment
pair, the agent’s portfolio choice problem is to find an admissible trading strategy θ which
maximizes his expected utility of terminal wealth. The agent’s value function is thus given
by:

Ve(x) � sup
θ∈	

EU
(
X x,e,θ (T )

)
. (20)

Without the ESCC, the agent’s value function is V0(x). If he could use a certain amount
k ∈ R to purchase the ESCC at the initial time, then the agent would only do so as long as
this trade allows him to improve on his utility index and this naturally leads to the following:

Definition 8 For an agent with initial capital x ∈ R and utility function U , the utility based
buying price of an arbitrary ESCC is defined by

ub(x, e) � sup {k ∈ R : V0(x) ≤ Ve(x − k)} , (21)

where e denotes the corresponding cumulative income process. Symmetrically, the utility
based selling price of an ESCC is defined by −us(x, e) := ub(x,−e).

Remark 9 It follows from [1], [48], [5], [45] and [25] among others that the conditions
imposed on the utility function are sufficient to guarantee the existence of unique solution
to the agent’s utility maximization problem (20) for every initial capital x > −ǔ(e) +
αE0 D0(T ).

A natural question to address before pursuing the study of utility based prices any further
is that of existence and consistency of the derived pricing rule with the absence of arbitrage
opportunities. As mentioned in the above remark, the conditions that we impose on the
utility function are sufficient to guarantee the existence of a unique solution to the agent’s
portfolio choice problem. The corresponding value functions being strictly concave, they are
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continuous on the interior of their domain and existence of the utility based prices follows.
Our next result establishes consistency of the pricing rule and is a mild generalization of
Theorem 4 and Proposition 7 in [1].

Theorem 10 Let e ∈ E be an arbitrary cumulative income process. Then its utility based
prices exist and satisfy the consistency condition ǔ(e) ≤ ub(x, e) ≤ u0(e) ≤ us(x, e) ≤ û(e)
for every initial capital x ∈ (α,∞).

Proof See [1] �
Contrary to [1] who mainly focus on theoretical properties of the utility based pricing rule,

we are interested in the actual computation of the prices associated with an arbitrary ESCC.
To this end, we first show how to solve the utility maxmization problem by transforming
the objective function and recasting it into a standard, complete markets, portfolio choice
problem with state, time and path-dependent utility function.

2.2 Reduction to a complete market problem

In order to study the agent’s portfolio choice problem, we start by defining his value function at
some intermediate date and establish that it verifies the principle of dynamic programming.
Let us define 	t to be the set of time-t admissible trading strategies, that is the set of
H-predictable and almost surely square integrable processes θ such that the process

X θ
t (u) � X θ (u) − D0(t)

D0(u)
X θ (t) ≡

u∫

t

D0(s)

D0(u)
θ(s)∗σ(s)dW (s), (22)

is uniformly bounded from below by a random variable in the space L of (9). The value
function of an agent endowed with a contingent claim e and having initial capital x at time t
is now defined by

Ve (t, x) � ess sup
θ∈	t

EtU
(

X x,e,θ
t (T )

)
, (23)

where Et is the time-t conditional expectation operator under the objective probability mea-
sure and where we denote by X ≡ X x,e,θ

t the unique solution to (12) with initial condition x
at time t . The following result establishes the dynamic programming principle for the agent’s
utility maximization problem.

Proposition 11 Let (x, e) ∈ R × E denote an arbitrary endowment pair. The value function
of the agent’s utility maximization problem satisfies the equation

Ve
(
τ̌ , x

) = ess sup
θ∈	τ̌

Eτ̌ Ve

(
τ̂ , X x,e,θ

τ̌
(τ̂ )

)
, (24)

of dynamic programming on the stochastic interval [τ̌ , τ̂ ] for every pair (τ̌ , τ̂ ) of H-stopping
times such that τ̌ ≤ τ̂ ≤ T .

Proof Let (x, e) be given and consider an arbitrary pair (τ̌ , τ̂ ) of stopping times satisfying
the above conditions. Using the definition of the agent’s value function in conjunction with
the law of iterated expectations we have

Ve
(
τ̌ , x

) = ess sup
θ∈	τ̌

Eτ̌ U
(

X x,e,θ
τ̌

(T )
)

≤ ess sup
θ∈	τ̌

Eτ̌ Ve

(
τ̂ , X x,e,θ

τ̌
(τ̂ )

)
. (25)
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In order to establish the reverse inequality, let us assume that the agent’s initial capital is such
that Ve(τ̌ , x) is finite for otherwise there is nothing to prove. According to Remark 9 there
exists an optimal trading strategy for the agent starting from (x, e) at the stopping time τ̌ .
Denoting this trading strategy by θ̂ it is now easily seen that we have

Ve
(
τ̌ , x

) = Eτ̌ U
(

X x,e,θ̂
τ̌

(T )
)

= Eτ̌

(
Eτ̂ U

(
X x,e,θ̂

τ̌
(T )

))

= Eτ̌ Ve

(
τ̂ , X x,e,θ̂

τ̌
(τ̂ )

)
, (26)

by the law of iterated expectations and the optimality of θ̂ . Comparing (25) with (26) we
conclude that (24) holds and our proof is complete. �

Let now h = (A, R(·)) be an arbitrary event sensitive contingent claim as in Definition
3 and denote by e the corresponding cumulative income process. Since after the event time
the agent has no endowment, it should be the case that on the set {τ ≤ t} his value function
coincides with that of a complete markets utility maximization problem with no-contingent
claim. The next proposition makes this intuition precise.

Proposition 12 Let x ∈ R denote an arbitrary initial capital and consider an agent endowed
with one unit of the event sensitive contingent claim h. Then

V0 (t, x) � ess sup
θ∈	t

EtU
(

X x,0,θ
t (T )

)
= Ve (t, x) , (27)

holds for every t in the stochastic interval [τ ∧ T, T ] where e(·) denotes the cumulative
income process associated with the event sensitive contingent claim.

Proof Straightforward application of the dynamic programming equation and the definition
of the event sensitive contingent claim. �

In view of the above proposition, it is now clear that the optimal trading strategy for the
agent’s portfolio choice problem (20) is of the form:

θ̂ (t) = θτ (t)1{t<τ } + θ0(t)1{t≥τ }, (28)

where θ0 is the optimal strategy for a no-contingent claim utility maximization problem
where the agent starts from the initial capital

X x,e,θτ (τ ) = R(τ ) + X x,0,θτ (τ−),

at the event time τ . Since the latter can be computed using standard techniques, we are only
left with the problem of determining the optimal trading strategy to be used prior to the event
time. To this end we use a well-known result from [11] (see also [30]):

Lemma 13 Let k denote an arbitrary H-predictable process. Then there exists a unique
F-predictable process kτ such that k(t) = kτ (t) holds almost surely for every time t ∈ [0, T ]
on the set {t < τ }.
As a result of the above lemma, the trading strategy θτ in (28) may be chosen to be predictable
with respect to the filtration generated by the Brownian motion and combining this with the
definition of the agent’s value function we obtain:
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Lemma 14 Let x ∈ R denote an arbitrary initial capital and consider an agent endowed
with one unit of the event sensitive contingent claim h. Then

Ve (t, x) = ess sup
θ∈	t

1

EtU
(

X x,e,θ
t (T )

)
, (29)

on the set {t < τ } where θ ∈ 	t
1 denotes the set of admissible trading strategies which admit

a decomposition of the form (28) for some F-predictable θτ ∈ 	t .

Proof This follows from the observation that the optimal trading strategy has to lie in 	t
1.

See the proof of Lemma 116 in [24] for details. �
Using standard results on Cox processes (see [39] or [30] for a survey), we now define a

strictly positive F-progressively measurable, bounded process � by setting.

�(t) � P {τ > t |F (t)} ≡ exp

⎛
⎝−

t∫

0

λ(s)ds

⎞
⎠, (30)

and let �t be the F-progressively measurable process given by �t := �/�(t). Combining the
previous results, we now obtain the main theorem of this section. It provides a reformulation
of the agent’s portfolio choice problem before the event time as an equivalent complete
markets utility maximization problem with a modified state, time and path-dependent utility
function.

Theorem 15 Let x ∈ R denote an arbitrary initial capital and consider an agent endowed
with one unit of the event sensitive contingent claim h. Then

Ve (t, x) = ess sup
θ∈	t

0

Et

[
�t (T )U

(
A + X x,θ

t (T )
)

−
T∫

t

V0

(
s, R(s) + X x,θ

t (s)
)

d�t (s)

⎤
⎦ , (31)

for every t on the set {t < τ } where 	t
0 denotes the set of admissible trading strategies

θ ∈ 	t that are predictable with respect to the Brownian filtration F.

Proof Let (x, h) denote an arbitrary endowment pair as in the statement and fix an initial
time t ∈ [0, T ]. Placing ourselves on the set {t < τ } and writing the dynamic programming
equation for the value function of the agent’s utility maximization problem on the stochastic
interval [t, τ ∧ T ] we get

Ve (t, x) = ess sup
θ∈	t

Et Ve

(
τ ∧ T, X x,e,θ

t (τ ∧ T )
)

= ess sup
θ∈	t

Et

(
U

(
X x,e,θ

t (T )
)

1{τ>T } + Et Ve

(
τ, X x,e,θ

t (τ )
)

1{τ≤T }
)

.

Let now θ denote an arbitrary trading strategy in the set 	t
1 and consider separately the two

terms appearing in the expectation on the right hand side of the above equation. For the first
term we have

EtU
(

X x,e,θ
t (T )

)
1{τ>T } = EtU

(
A + X x,θτ

t (T )
)

1{τ>T }

= 1{t<τ }Et�
t (T )U

(
t, A + X x,θτ

t (T )
)

, (32)
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for some strategy θτ ∈ 	t
0 where the first equality follows from the definition of the cumu-

lative income process associated with the event sensitive contingent claim h and the second
from [30, Proposition 3.2] in conjunction with (30) and the fact that the càdlàg process

V (t) � Et�(T )U
(

A + X x,θτ
t (T )

)
,

is a P-martingale in the filtration generated by the Brownian motion. Similarly, placing
ourselves on the set {t < τ } we have that the second term satisfies

Et Ve

(
τ, X x,e,θ

t (τ )
)

1{τ≤T } = Et Ve

(
τ, R(τ ) + X x,θτ

t (τ )
)

1{τ≤T }

= −Et

T∫

t

V0

(
s, R(s) + X x,θτ

t (s)
)

d�t (s), (33)

for some θτ ∈ 	t
0 where the first equality follows from the definition of the value process

and the second from [15, Proposition 1] (see also [24, Proposition 99]) in conjunction with
Proposition 12 and the fact that the càdlàg process

Y (t) � Et

T∫

t

V0

(
s, R(s) + X x,θτ

t (s)
)

d�(s)

is a P-martingale in the filtration generated by the Brownian motion. Plugging (32) and (33)
back into the dynamic programming Eq. (32), we obtain the reformulation (31) and our proof
is complete. �

Remark 16 Taking into account the measurability of the different processes involved, it easily
seen that we may replace the H (t)-conditional expectation operator Et in (31) by the F (t)-
conditional expectation operator. This is consistent with the fact that, as implied by Lemma
13, every H-predictable process can be chosen to be F-predictable before the event time.

Remark 17 The previous theorem deals with the case of an agent endowed with a long
position in the ESCC, but a similar reformulation can be established for the case where the
agent sells the claim instead of buying it. In order to simplify the exposition of our results,
we omit the details.

The above result illustrates the wealth effects induced by the dependence of the agent’s
endowment process on the event time. In order to maximize his expected utility, the agent’s
starts by weighting the utility indexes that he would obtain (i) at the terminal time if the
event does not to happen and (ii) at the event time if happens prior to the maturity, by the
respective probability of each of these scenarios and then chooses a trading strategy so as to
maximize this modified path-dependent criterion. Consider an agent whose utility function
is only defined on the positive real line (α = 0). Since he is unable to hedge the jump in
his endowment process, the agent must be prepared to absorb it at any time and therefore
faces an endogeneous liquidity constraint of the form X + R ∈ R+ all along the path (in the
classical complete markets utility maximization framework, such liquidity constraints have
been studied by [3,12] and [36]). In a slightly different, albeit related, setting the presence of
such wealth effects in the agent’s utility maximization problem was foreseen, although not
demonstrated explicitly, by [18].
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3 Late resolution of uncertainty

An interesting point is that the presence of such wealth effects in the agent’s utility maxi-
mization problem is entirely due to the way in which the uncertainty induced by the event
time τ is resolved and not to the actual payment of the cash flows. By separating both,
e.g. studying the case where the information about the event gets revealed at the payment and
not continuously through time, we can thus analyze the impact of the temporal resolution of
uncertainty on both the arbitrage prices and the utility based prices of ESCCs.

3.1 Arbitrage pricing under late resolution

In order to model such a late resolution of uncertainty let us assume (i) that the information
available to agents at any time is no longer represented by the filtration H generated by the
paths of both the Brownian motion and the point process but by the filtration

G = {G (t)} �
{

F (t) if t ∈ [0, T ),

H (T ) if t ≡ T .

}
(34)

and (ii) that agents are constrained to choose their trading strategies in the set 	0 of admissible
trading strategies that are predictable with respect to the filtration F generated by the Brownian
motion.

Remark 18 Let φ be an almost surely square integrable, R
n-valued process which is progres-

sively measurable with respect to the filtration G and define a real valued, Gadapted process
X by setting

X (t) �
t∫

0

φ(s)∗dB(s) =
t∫

0

n∑
k=1

(φk(s)dBk(s)).

As is easily seen, the process B is still a Brownian motion in the enlarged filtration G and it
follows that the process X is a (G, P)-local martingale with continuous paths. In particular,
such a process does not jump at time T and it follows that we may replace the integrand by
the F-progressively measurable process 1[0,T )φ without affecting the paths of the process X .
This justifies the fact that even though the information available to agents is represented by
the enlarged filtration G we restrict ourselves to the set of F-measurable admissible trading
strategies.

The particular class of ESCCs that we shall consider throughout this section consists of
those claims for which the recovery is paid at the terminal time and is formally defined as
follows:

Definition 19 An event sensitive contingent claim with terminal settlement is represented
by a pair (A, R̄) of nonnegative F (T )-measurable random variables in L × L satisfying
either condition VD or condition CD.

As is easily seen, the overall cumulative income process associated with a long position
in an event sensitive contingent claim with settlement at the terminal date is the càdlàg
semimartingale e ∈ E defined by

e(t) � 1{τ>T =t} A + 1{τ≤t=T } R. (35)
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For the case in which the information about the realization of the event time is revealed
continuously through time, our results concerning arbitrage bounds and the reformulation of
the agent’s portfolio choice problem hold true if we define the settlement process by

R(t) � E0
(

D0(T )
D0(t) R̄

∣∣∣ F (t)
)

. (36)

In other words, if information about the event time is revealed continuously the agent is
indifferent between receiving the amount R(τ ) at the event time or the amount R̄ ≡ R(T ) at
the terminal time.

Remark 20 Taking the above fact into account we shall from now on use the notation û(e)
and us(x, e) to designate, respectively, the early resolution upper hedging price and utility
based selling price of both the ESCC (A, R̄) with terminal settlement and cumulative income
process given by (35) or the ESCC (A, R(·)) with cumulative income process given by (10).

Let now (A, R̄) be an arbitrary event sensitive contingent claim with terminal settlement
and cumulative income process e given by (35). For such a claim, we define the upper and
lower hedging prices under late resolution as

v̂(e) � inf
{

x ∈ R : ∃θ ∈ 	0 such that X x,θ (T ) − e(T ) ∈ R+
}
, (37)

and −v̌(e) := v̂(−e). Note that the only difference between early and late resolution hedging
prices is the set of allowed trading strategies. Our first result shows that the temporal resolution
of the uncertainty associated with the event time has no impact on the arbitrage pricing of
the event sensitive contingent claim in the sense that its hedging prices are the same under
late resolution and early resolution of the extraneous uncertainty.

Proposition 21 Let (A, R̄) be an arbitrary event sensitive contingent claim with cumulative
income process e given by (35). Then we have û(e) = v̂(e).

Proof Observing that 	0 ⊂ 	 we deduce from (15) and (37) that û(e) ≤ v̂(e). To establish
the reverse inequality and thus complete the proof, let us assume that the claim satisfies
condition CD (the case where the claim satisfies condition VD is treated similarly). By
Proposition 6 we have that û(e) = u0(R̄). Applying Lemma 5 we know that starting from
this amount there exists a trading strategy in 	0 whose terminal value is equal to R̄ and
observing that R̄ − e(T ) ∈ R+ we conclude that v̂(e) ≤ u0(R̄) = û(e) holds. �
3.2 Utility based pricing under late resolution

Consider now an agent whose preferences over terminal consumption bundles are represented
by a utility function U : (α,∞) → R as in the previous section and who is endowed at time
zero with some initial capital x as well as with one unit of an event sensitive contingent
claim (A, R̄) with terminal settlement as in Definition 19. Let e defined as in (35) denote the
associated cumulative income process. In accordance with the model set forth in the previous
section, the agent’s late resolution portfolio choice problem is to find an admissible trading
strategy θ ∈ 	0 which maximizes his expected utility of terminal wealth. The corresponding
value function is thus given by

V 
e (x) � sup

θ∈	0

EU
(
X x,θ (T ) + e(T )

)

≡ sup
θ∈	0

EU
(
X x,θ (T ) + A1{τ>T } + R̄1{τ≤T }

)
, (38)
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where X x,θ denotes the solution to the linear stochastic differential Eq. (12) corresponding
to the initial capital x ∈ R, the trading strategy θ and the cumulative endowment process
e = 0. We define the utility based prices of an arbitrary event sensitive contingent claim with
settlement at the terminal date under late resolution of uncertainty as follows:

Definition 22 For an agent with initial capital x ∈ R and utility function U the late resolution
utility based buying price of an arbitrary event sensitive contingent claim with terminal
settlement is defined by

pb(x, e) � sup
{

k ∈ R : V 
0 (x) ≤ V 

e (x − k)
}

, (39)

where e denotes the corresponding cumulative income process. Symmetrically, the utility
based selling price of an event sensitive contingent claim with terminal settlement is defined
by −ps(x, e) := pb(x,−e).

Our next result confirms the intuition that, even though it has no impact on the arbitrage
prices of the ESCC, the temporal resolution of event-uncertainty has an impact on its utility
based prices.

Proposition 23 Let (A, R̄) be an arbitrary event sensitive contingent claim with terminal
settlement as in Definition 19 and denote by e the corresponding cumulative income process.
Then we have the inequalities pb(x, e) ≤ ub(x, e) and us(x, e) ≤ ps(x, e) for every initial
capital x ∈ (α,∞).

Proof Recall from the previous section, that for the event sensitive contingent claim under
consideration the agent’s early resolution value function is given by

Ve(x) = sup
θ∈	

EU
(
X x,θ (T ) + e(T )

)
.

Comparing this expression with (38) and observing that 	0 ⊂ 	 by definition we conclude
that V 

e (x) ≤ Ve(x) holds for every initial capital. On the other hand, using Proposition 12
in conjunction with Lemma 13, Remark 18 and the fact that the wealth process X x,θ has
continuous paths, we obtain that

V0(x) ≡ V 
0 (x) � sup

θ∈	0

EU
(
X x,θ (T )

)

holds for every initial capital. The result now follows from the definition of the utility based
prices and the fact that both the late and the early resolution value functions are increasing
in wealth. �
As is easily checked, all the properties of the early resolution utility based pricing rule also
hold for the late resolution price. In particular, provided that they exist the above prices are
consistent with one another and with the absence of arbitrage opportunities. Combining these
observations, we obtain that

ǔ(e) = v̌(e) ≤ pb(x, e) ≤ ub(x, e) ≤ u0(e)

≤ us(x, e) ≤ ps(x, e) ≤ v̂(e) = û(e), (40)

holds for every initial capital x ∈ (α,∞). Thus, late resolution utility based prices (which are
much easier to compute, see the next section) provide an upper bound on the early resolution
utility based pricing interval.
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3.3 The utility maximization problem

We now turn to the study of the agent’s late resolution utility maximization problem. Rather
than treating the existence and characterization of the optimal policy separately as we did for
the early resolution problem in Sect. 2, we shall attack both problems at the same time and
actually compute the optimal policy. Our first result in this direction provides a reformulation
of the late resolution utility maximization problem (38) into an equivalent complete market
problem with a modified state dependent but path independent utility function.

Theorem 24 Let (A, R̄) denote an arbitrary event sensitive contingent with terminal settle-
ment as in Definition 19. Then we have

V 
e (x) = sup

θ∈	0

E
(
�(T )U

(
X x,θ (T ) + A

) + �(T )U
(
X x,θ (T ) + R̄

))
, (41)

for every initial capital x ∈ R where � is the non negative, strictly decreasing process defined
by (30) and where we have set � := 1 − �

Proof Let θ ∈ 	0 and fix an arbitrary initial capital x ∈ R. Observing that by definition of
the set 	0 the triple (A, R̄, X x,θ (T )) is measurable with respect to the filtration generated
by the Brownian motion and using the law of iterated expectations in conjunction with the
definition of � we get

EU
(
X x,θ (T ) + e(T )

) = EU
(
X x,θ (T ) + A1{τ>T } + R̄1{τ≤T }

)

= E
(
�(T )U

(
X x,θ (T ) + A

) + �(T )U
(
X x,θ (T ) + R̄

))

where we have used the fact that the set {τ = 0} is a P-null set of G. Taking the supremum
over admissible trading strategies θ ∈ 	0 on both sides of the above expression we get (41)
and our proof is complete. �

Let us now turn to the agent’s equivalent utility maximization problem (41) and consider
the F (T )-measurable state dependent utility function defined by

Ue(x) � �(T ) · U (x + A) + �(T ) · U
(
x + R̄

)
. (42)

Recalling the definition of the set 	0 of admissible trading strategies and using the result of
Lemma 5, it is easily checked that an arbitrary random variable X is feasible for the initial
capital x ∈ R if and only if it is F (T )-measurable and satisfies the budget constraint

u0(X) � E0 (D0(T )X) ≡ E (H0(T )X) ≤ x, (43)

where H0 := D0 Z0 denotes the risk neutral state price density. Using this fact we may now
regard the dynamic problem (41) as the static problem of maximizing the agent’s modified
expected utility functional over the set of F (T )-measurable random variables that satisfy
the budget constraint (43). In order to obtain a simple characterization of the solution to this
variational problem, we start by observing that the function of (42) is almost surely strictly
increasing, strictly concave and continuously differentiable in x on the open stochastic domain

De � (Ce,+∞) = (
α − A ∧ R̄,+∞)

, (44)

and that the corresponding marginal utility function admits a state dependent, continuous
and strictly decreasing inverse function Ie(·) which maps (0,∞) onto the stochastic interval
of (44). Because the static problem is subject to a single budget constraint and because the
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objective functional is strictly concave, its solution may be found through the associated first
order conditions which require that the optimal terminal wealth be given by

Xe(x) � Ie
(

ŷ(x) · H0(T )
)
, (45)

for some strictly positive Lagrange multiplier ŷ(x) chosen in such a way that the budget
constraint (43) is saturated. In order to make this statement precise, let us impose the following
additional condition:

Condition Let (A, R̄) denote an event sensitive contingent claim with terminal settlement
as in Definition 19. Then the pair (A, R̄) is said to satisfy condition FV if the map Xe defined
by (47) below is finitely valued.

The following theorem provides a complete solution to the agent’s modified utility maxi-
mization problem (41) under condition FV and constitutes the main result of this section.

Theorem 25 Let (A, R) be such that condition FV holds and fix an arbitrary initial capital
such that x > u0(Ce). Then the random variable of (45) where ŷ(x) ∈ (0,∞) is chosen such
that the budget constraint (43) holds as an equality, is the unique optimal terminal wealth
for the utility maximization problem (41).

Proof Let (x, A, R) be as in the statement and observe that by concavity of the agent’s
modified utility function we have

Ue(z) − Ue (Ie(y)) ≤ y · (z − Ie (y)) (46)

for every (z, y) ∈ De × R+. Let us assume for the moment that a Lagrange multiplier has
been found such that the budget constraint holds as an equality and consider the random
variable of (45). By construction this random variable is feasible for the given initial capital
and using (46) we have that

EUe (Xe(x)) ≥ EUe(X) + ŷ(x) · E (H0(T ) (Xe(x) − X))

= EUe(X) + ŷ(x) · (x − E (H0(T )X)) ≥ EUe(X),

holds for every x-feasible random variable X . The above string of inequalities shows that
the random variable Xe(x) is optimal for the utility maximization problem (41) and since
uniqueness of the optimum follows from the strict concavity of the modified utility function
all there remains to prove is that we can indeed find a strictly positive constant fix such that
(43) holds as an equality. To this end consider the function defined by

Xe(y) � E (H0(T )Ie (y · H0(T ))) . (47)

Under condition FV, this is a real valued, continuous and strictly decreasing function which
takes the value infinity at zero and whose limit at infinity equals the risk neutral price u0(Ce).
In particular, the above function admits a strictly decreasing inverse and it follows that for
every x > u0(Ce) there exists a unique strictly positive Lagrange multiplier such that the
budget constraint holds as an equality. �
Remark 26 The validity of condition FV may in general be difficult to check since in most
cases the inverse marginal utility function cannot be computed explicitly. Nevertheless, for
an agent with log preferences we have

2κ · Ie(κ) = 1 − κ
(

A + R̄
)

+
((

κ
(
R̄ − A

) − �(T ) + �(T )
)2 + 4�(T )�(T )

) 1
2
, (48)
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and it is a matter of straightforward (albeit messy) calculations to verify that the inverse
marginal utility function satisfies the prescribed limits and that the integrability condition
FV holds for every ESCC with settlement at the terminal date. Similarly, for the case of an
agent with negative exponential utility given by −U (x) = exp(−γ x) for some non negative
γ we have

Ie(κ) = γ −1 log
(
γ κ−1

(
�(T )e−γ A + �(T )e−γ R̄

))
, (49)

and it is straightforward to verify that the inverse marginal utility function satisfies the pre-
scribed limits and that the integrability condition FV holds for every ESCC with settlement
at the terminal date.

4 Negative exponential utility

In this section we study the special case where the agent has constant absolute risk aversion.
For this case we can compute explicitly late resolution utility prices and, under additional
assumptions, early resolution utility based prices.

The negative exponential utility function has two interesting characteristics: (i) it cor-
responds to constant absolute risk aversion and (ii) it allows for negative terminal wealth
(because it is defined over the whole real line). As a result, we show below that the associated
utility based prices are independent of the agent’s initial capital, and that the endogeneous
liquidity constraint discussed in Sect. 2.2 never binds. Nevertheless, we find that early reso-
lution buy (resp. sell) prices are, in general, higher (resp. lower) than late resolution prices
due to the impact of information on the hedging demand of the investor. When the hedging
demand is zero, which is for example the case when the payoffs (A, R̄) are constant, then late
and early resolution prices coincide. In other words, when the CARA investor buys an ESCC
with state independent payoffs he is not willing to pay a premium for receiving information
early.

4.1 The no-contingent claim problem

For simplicity of exposition we shall throughout this section restrict ourselves to the subset
� ⊂ 	 of admissible strategies which are such that

EU−
(

inf
t∈[0,T ]

X x,θ (t)

D(t)

)
= E

[
exp

(
−γ · inf

t∈[0,T ]
X x,θ (t)

D(t)

)]
< ∞, (50)

where X x,θ is the value process associated with the initial capital x at time zero, the trading
strategy θ and the endowment process e ≡ 0. Before studying the early and late resolution
utility maximization problems, we start by describing the solution to the no-contingent claim
problem

V0 (t, x) = − ess inf
θ∈�t

0

Et exp
(
−γ X x,θ

t (T )
)

. (51)

Setting A = R ≡ 0 in (49) and using (45) we obtain that for an arbitrary initial capital x at
time t , the agent’s optimal terminal wealth is given by

X0
t (x) � −γ −1 log

((
ŷ(t, x)/γ

) · Ht
0(T )

)
, (52)
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where we have set Ht
0 := H0/H0(t) and where the F (t)-measurable Lagrange multiplier

ŷ(t, x) is chosen so as to saturate the agent’s budget constraint:

x = Et
(
Ht

0(T )X0
t (x)

)
. (53)

In order to simplify the exposition of our results, we now introduce the two dimensional
process (D, Z) with coordinates D(t) := Et Ht

0(T ) and

Z(t) � Et
(
Ht

0(T ) log Ht
0(T )

)
. (54)

As is easily seen, the nonnegative process D satisfies D(T ) = 1 and represents the price
process of a default free zero-coupon bond with maturity T . Using these definitions in con-
junction with (52) and (53) we obtain that

ŷ(t, x)/γ � exp −
(

γ x + Z(t)

D(t)

)
(55)

and plugging this back into the definition of the optimal terminal wealth we get that the
agent’s no-contingent claim value function is given by

V0 (t, x) ≡ V 
0 (t, x) = −Et exp

(−γ X0
t (x)

)

= −D(t) · exp −
(

γ x + Z(t)

D(t)

)
, (56)

where the first equality follows from the results of the previous section (see in particular the
proof of Proposition 23).

4.2 Late resolution utility based prices

Let (A, R̄) be an arbitrary ESCC with terminal settlement and denote by e the corresponding
cumulative income process. As is easily seen from (38), the modified utility function is of
the form Ue(x) = U (x + Ce) where

Ce � U−1 (E [e(T )|F ]) = −γ −1 log
(
�(T )e−γ A + �(T )e−γ R

)
, (57)

is the F -conditional certainty equivalent of the event sensitive contingent claim. Combining
this definition with Theorem 25 and the results of the previous section, we now obtain an
explicit representation of the late resolution utility based prices for an agent with negative
exponential utility function.

Theorem 27 Assume that the random variable Ce of (57) is integrable under the risk neutral
measure. Then the late resolution utility based buying price corresponds to the price of
receiving the conditional certainty equivalent:

pb(x, e) ≡ pb(e) = u0(Ce) � E0 (D0(T )Ce) . (58)

In particular, it is independent from the agent’s initial capital and decreasing in the agent’s
absolute risk aversion parameter γ with limγ→0 u0(Ce) = u0(e).

Proof Comparing the definition of the conditional certainty equivalent with (49) and using
the result of Theorem 25, we have that the optimal terminal wealth for the agent’s late
resolution problem is given by

Xe(x) � −γ −1 log
((

ŷe(x)/γ
) · H0(T )

) − Ce,
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where the strictly positive Lagrange multiplier ŷe(x) is chosen so as to saturate the agent’s
budget constraint (43). A straightforward computation then shows that ŷe(x) is given by

ŷe(x) � ŷ
(
0, x + E0 D0(T )Ce

) ≡ ŷ (0, x + u0(Ce)) ,

in the notation of (55) and plugging this back in the definition of the optimal terminal wealth
we obtain that for an arbitrary initial capital x ∈ R, the agent’s late resolution value function
is given by

−V 
e (x) = E exp (−γ Xe(x)) = D(t) · exp −

(
γ · [x + u0(Ce)] + Z(0)

D(0)

)
.

Comparing this with the no-contingent value function given in the previous section and using
the first equality in (56), it is easily seen that we have

V 
e (x) = V 

0 (x + u0(Ce)) ≡ V0 (x + u0(Ce)) ,

and the first part of the statement now follows from the definition of the utility based buying
price. The decrease of the price function with respect to γ being a consequence of the
definition of the certainty equivalent, we are only left to prove the last part. Observing that

lim
γ→0

γ −1 log
(
�(T )e−γ A + �(T )e−γ R̄

)
= − (

�(T )A + �(T )R̄
)
,

and using the decrease of the conditional certainty equivalent with respect to γ in conjunction
with the monotone convergence theorem we obtain

lim
γ→0

−u0(Ce) = E0
(

D0(T ) · lim
γ→0

γ −1 log
(
�(T )e−γ A + �(T )e−γ R̄

))

= −E0 (
D0(T )�(T )A + D0(T )�(T )R̄

) = −u0(e),

where the last equality follows from the law of iterated expectations, (30) and the definition
of the cumulative income process associated with the ESCC under consideration. �
Remark 28 Using the previous result in conjunction with Definition 22 and assuming that
C−e is integrable under the risk neutral probability measure, we obtain that the late resolution
utility based selling price is given by

ps(e) = −pb(−e) ≡ E0
(

D0(T ) · γ −1 log
(
�(T )eγ A + �(T )eγ R

))
, (59)

and is an increasing function of the agent’s absolute risk aversion parameter with
limγ→0 ps(e) = limγ→0 pb(e) = u0(e). As easily seen, this limit price is computed by
assigning a zero risk premium to the risk associated with the event time and it follows from
([1], Section 5.2.3) that this price coincides with the fair price introduced by [7] and studied
further by [32].

4.3 Early resolution prices

Let (A, R̄) denote an arbitrary event sensitive contingent claim with settlement at the terminal
date as in Definition 19 and denote by R(·) the value process of the event insensitive contingent
claim with terminal pay-off given by R̄. In order to simplify the presentation of our results,
let us introduce the equivalent probability measure

P̃(C) � E0
(

1C
D0(T )

D(0)

)
= E

(
1C

H0(T )

D(0)

)
, (60)
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and denote by Ẽ the associated expectation operator. In the terminology of term structure
models this equivalent probability measure is referred to as the forward measure for the
settlement date T and corresponds to taking the zero-coupon bond as the numéraire instead
of the savings account.

The following theorem constitutes the main result of this section. It provides an explicit
characterization of the utility based prices in terms of the solution to a Backward Stochastic
Differential Equation under the forward measure.

Theorem 29 Assume that (A, R̄) are bounded random variables. Then the early resolution
utility based buying price is given by ub(x, e) = ub(e) = Q(0)D(0) where Q is the maximal
solution to the backward stochastic differential equation

Q(t) = Ẽt

⎛
⎝A + 1

γ

T∫

t

λ(s)
{

1 − eγ ·[Q(s)−R(s)/D(s)]} ds

⎞
⎠ (61)

In particular, it is independent from the agent’s initial capital and decreasing in the agent’s
absolute risk aversion parameter γ with limγ→0 ub(e) = u0(e).

Remark 30 Combining Theorem 29 with the definition of the utility based prices, one can
obtain an explicit characterization of the utility based selling price of the event sensitive
contingent claim similar to that of the utility based buying price. We omit the details.

Sketch of the Proof Theorem 29 is established by an argument similar in spirit to the sepa-
ration of variables technique that was used by [44] to solve the utility maximization problem
of an agent with negative exponential utility. Motivated by preliminary explorations of the
Markov case, we start by guessing that, prior to the event time, the agent’s value function is
of the form

Ve (t, ω, x) = V0 (t, ω, x + D(t)Q(t))

≡ −D(t) · exp −
(

γ Q(t) + γ x + Z(t)

D(t)

)
,

for some nonnegative, bounded process Q with terminal value equal to A. Combining the
result of Theorem 15 with the classical characterization of the value function (see e.g. [34])
as the only adapted process such that

�(t)Ve
(
t, X x,θ (t)

) −
t∫

0

V0
(
s, X x,θ (s) + R(s)

)
d�(s), (62)

is a càdlàg supermartingale for every trading strategy θ ∈ �0 and a uniformly integrable
martingale for the optimal trading strategy, we then obtain a backward stochastic differential
equation for the unknown process Q as well as an explicit characterization of the optimal
trading strategy in terms of the diffusion coefficient of the 3-dimensional process (D, Z , Q).

Finally, using recent results of [41] we establish the existence of a unique maximal solution
to this recursive equation and conclude the proof by verifying that the constructed value
function indeed coincides with the value function of the agent’s utility maximization problem.
Details of the proof are provided in the appendix. �
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4.4 The early resolution premium

Proposition 23 shows that the early resolution premium, as measured by the difference
between early and late resolution utility based prices, is in general different from zero.
Combining the expressions for the late and early resolution utility based prices prices given
in Theorems 27 and 29 we get that for an investor with constant absolute risk aversion, the
time-0 early resolution premium τb(e) on utility based buying prices is explicitly given by

τb(e) � pb(e) − ub(e) = D(0) ·
(

ẼCe − Q(0)
)

, (63)

where the conditional certainty equivalent Ce of the event sensitive contingent claim under
consideration is defined by (57) and Q is the maximal solution to the backward stochastic
differential Eq. (61).

Inspection of this expression then shows that a sufficient condition for the time-0 early
resolution premium τb(e) on the utility based buying prices to be equal to zero is that for
every t we have the identity

exp [−P(t)] � exp
[
−Ẽt log

(
�t (T )e−γ A + �t (T )e−γ R̄

)]

= Ẽt exp
[
− log

(
�t (T )e−γ A + �t (T )e−γ R̄

)]
.

Indeed, if this condition holds then it is easily seen that the solution to the backward stochastic
differential equation (61) is given by DQ = −D P/γ and the result now follows by observing
that at the initial time, this coincides with the late resolution utility based buying price given
by (58). A special case where this condition holds is that in which both the contingent claim’s
payoffs and the arrival intensity are deterministic. This corresponds, for example, to a default
digital triggered by a deterministic intensity point process.

5 Constant relative risk aversion

Let us now turn to the case where the agent’s exhibits constant relative risk aversion (CRRA)
and is of the form:

uγ (x) �
{

x1−γ /(1 − γ ), if γ ∈ (0,∞)\{1}
log x, if γ = 1

}
. (64)

Unlike in the CARA case that was studied in the previous section, utility based prices are
in general functions of the wealth of the agent, as well as of his risk aversion. It is thus, in
general, not possible to derive explicit results for utility based prices of ESCCs for CRRA
investors. However, Propositions 15 and 24 lead to simple numerical procedures to compute
both late and early resolution utility based prices under Markovian assumptions. Taking this
into account, we specialize the economy to be of the Black and Scholes type and analyze
some specific examples of contingent claims (credit derivatives, defaultable bonds and vul-
nerable options). We start by describing the setup and numerical resolution techniques before
presenting the numerical results.

5.1 The model

The financial market model that we consider throughout this section is the standard Black
and Scholes model of a financial market. In other words, we shall assume that there is a
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constant interest rate and only one stock (or index) with constant coefficients a and σ . Thus
we have:

S(t)

S(0)
= exp

[(
a − σ 2

2

)
t + σ B(t)

]
= exp

[(
r − σ 2

2

)
t + σ W (t)

]
, (65)

where the process W is the P0-Brownian motion defined by (7). Further, we assume that the
intensity of the point process under the historical probability measure is a strictly positive
constant λ and consider contingent claims whose payoffs are at most deterministic functions
of the terminal stock price.

5.2 No-contingent claim value function

The no-contingent claim value function and optimal trading strategy in this model are well-
known and were first derived by [44]. For completeness we recall that they are respectively
given by

V0(t, x) = uγ

(
x · exp

[(
r + ξ2

2γ

)
· (T − t)

])
(66)

and θ(·) = ξ X (·)/[σγ ] where ξ is the constant risk premium used in the definition of both
the risk neutral probability measure P0 and the risk neutral Brownian motion.

5.3 Computing the value functions

5.3.1 Late resolution of uncertainty

Assume that condition FV holds and let the agent’s initial capital at time zero be such that
x > u0(Ce). According to the result of Theorem 25 the agent’s value function in this case is
given by (here we use the fact that the utility function depends on the state only through the
stock’s terminal value)

V 
e (x) = E [Ue ◦ Ie]

(
S(T ), ŷ(x)H0(T )

)
, (67)

where the optimal Lagrange multiplier ŷ(x) is chosen in such a way that the agent’s budget
constraint (43) holds as an equality. In order to simplify the computation of the agent’s value
function, let us start by observing that thanks to the explicit form (65) of the stock price
process and the definition of the state price density process we have

H0(t) = exp
[
− ( a+r

2

) (
1 − ξ

σ

)
t
]

·
(

S(T )

S(0)

)− ξ
σ

.

Using the above relation between the stock price process and the state price density process it
is now easily seen that the expectations in (67) and (43) depend only on the stock’s terminal
value. Observing that the distribution of the stock’s terminal value on R+ is explicitly given
by (with the usual informal probabilistic notation)

P [S(T ) ∈ dx] = dx

(2π)1/2 exp

[
− 1

2σ T

(
bT − σ 2

2 T + log
(

x
S(0)

))2
]

,

we can rewrite the Eqs. (67) and (43) as ordinary integrals with respect to the above density.
Such integrals are easily computed numerically by any modern mathematical software such
as Mathematica.
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To compute the associated late resolution utility based prices, we now need to solve
the non linear equation V0(x) = V 

e (x − p). For practical purposes, and in particular to
graph the prices, we found it easier to inverse the problem. We first fix a Lagrange mul-
tiplier y and compute the late resolution value function and initial capital z through the
integration of (67) and (43). Using the fact that the no-contingent claim value function is
known explicitly, we then compute the corresponding initial capital x through the inversion
formula

x = V −1
0

(
V 

e (z)
)

,

and finally obtain the late resolution utility based buying price of the contingent by setting
pb(x, e) = x − z. A similar procedure is implemented to compute the late resolution utility
based selling price.

5.3.2 Early resolution of uncertainty

Let us now turn to the more difficult early resolution case where the agent monitors the
realization of the event time continuously. From previous results, it is easily deduced that
the early resolution utility maximization problem of an agent who has initial capital x and is
endowed with one unit of the claim (A, R̄) is equivalent to that of an agent who has initial
capital x + u0(R̄) and is endowed with one unit of the claim (A − R̄, 0). Taking this fact into
account, we shall from now on restrict ourselves to the computation of the value function
associated with ESCC of the form

h �
(
Q (S(T )) , R̄ ≡ 0

)
,

for some well behaved function of the stock’s terminal value. Consider an agent endowed
with one unit of such a claim, fix an intermediate time t and suppose that the event is
still to occur. Assuming that the wealth reached by the agent at time t is equal to X (t)
and using the reformulation result of Theorem 15 in conjunction with the Markovian struc-
ture of our financial market model, we may write the agent’s value function at the time
t as

q(t, S(t), X (t)) = supθ∈	t
0

E

(
e−λ(T −t)u

(
X θ (T ) + αQ (S(T ))

)

+
T∫

t

λe−λ(u−t)V0
(
u, X θ (u)

)
du

∣∣∣∣ S(t), X (t)

)
, (68)

where X θ denotes the value process associated with the trading strategy θ and where the
no-contingent claim value function at time u is given by (66). The dynamic programming
equation associated with the above stochastic control problem is the non linear, second order
partial differential equation

sup
θ∈R

{
Dθq (t, s, x) + λ [V0(t, x) − q(t, s, x)] + ∂q

∂t
(t, s, x)

}
= 0, (69)

where Dθ denotes the infinitesimal generator of the two dimensional diffusion process with
coordinates S and X θ . Standard verification theorems show that if there exists a smooth solu-
tion to the above partial differential equation with the appropriate boundary conditions then
this solution coincides with the value function. The difficulty here is that in most cases such
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Fig. 1 Utility based buying prices (right panel) and selling prices (left panel) for an event digital as
functions of the initial capital when the parameters of the model are given by (A, R̄, T, λ, γ, a, r, σ ) =
(0, 30, 1, 0.25, 1, 0.1, 0.05, 0.2)

a classical solution cannot be shown to exist. Nevertheless, under quite general assumptions
the value function can be shown to constitute the unique viscosity solution to (69) with the
appropriate boundary conditions and this property gives a sufficient theoretical justification
for the use of finite differences discretisation schemes (sufficient conditions for this property
to hold can be found in [51, Chapter 4]).

To solve the dynamic programming equation associated with our problem we use an
explicit finite difference scheme, as suggested in Soner and Fleming [49, Chapter 9] and
which basically consists in approximating the continuous time problem by a discrete time
problem for a suitably chosen Markov chain. Such a discretisation actually transforms the
partial differential Eq. (69) into a difference equation which can be solved numerically by
going backwards from the terminal time to the initial time. A point worth noting is that
thanks to the concavity of the utility function, the maximization in (69) can be carried out
explicitly so that one can avoid the tedious task of solving the associated optimization problem
numerically at each step of the algorithm.

Let us now consider an economic agent who has initial capital x at time zero and is
endowed with one unit of the claim (A, R̄). Using our finite difference discretisation scheme
with the modified pay-off function Q = A − R̄ we obtain the expected utility index reached
by this agent at time zero through the formula

Ve(x) = q
(
0, S(0), x + u0(R̄)

)
,

where the risk neutral price u0(R) is computed by numerical integration of the pay-off func-
tion against the risk neutral distribution of the stock’s terminal value. Applying a procedure
similar to the one we used to calculate the late resolution utility based prices, we can now
compute the early resolution prices by comparing the above expected utility index with the
explicit formula for the no-contingent claim value functions given in (66).
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Fig. 2 Early resolution premia for an event digital as functions of the initial capital when the parameters of
the model are given by (A, R̄, T, λ, γ, a, r, σ ) = (0, 30, 1, 0.25, 1, 0.1, 0.05, 0.2)

5.4 Comparison of results for an event digital

We first analyze a security which pays a fixed amount at maturity, contingent on occurrence
of the event. This is analogous to, for example, a credit derivative or an IO/PO security.

Figure 1 shows the utility based buying and selling prices of such a security as a function
of the agent’s initial capital for the two scenarios of resolution of uncertainty. Figure 2
graphs the early resolution buy and sell premia, that is the differences between early and
late resolution buy prices and between late and early resolution sell prices. The figures
confirm:

1. The ordering of the utility based prices prescribed by (40).
2. As the agent’s initial capital increases all prices converge towards the risk neutral price

u0(e) which attributes a zero risk premium to the event risk.
3. As the agent’s initial capital tends to zero, the utility based selling prices converge to the

upper hedging price and the utility based buying prices to lower hedging price.
4. The early resolution premium is positive and tends to zero as the agent’s initial capital

tends to zero and infinity.

When his initial capital tends to zero, the CRRA agent becomes highly risk averse and prices
the claim assuming the worst case scenario, that is assuming that the event never occurs if he
buys, and that it always occurs if he sells. Likewise, when his initial capital increases relative
to his position in the claim, the investor becomes less risk averse relative to the event risk
and is therefore is willing to buy and sell it at the risk neutral price u0(e) which attributes a
zero risk premium to the event risk. In other words, the agent uses the historical (P-measure)
intensity of the event time τ to discount payoffs under the risk neutral probability measure.
Although this result is intuitive, it is interesting to see how fast the convergence occurs. For
credit exposures (measured by the ratio of the credit derivative nominal to the investor’s
initial capital) less than 75 %, the utility based prices already fall within a few basis points
of nominal from the risk neutral price. These results provide a justification for the approach
of some practitioners (e.g. JP Morgan’s CreditMetrics�) who use historical estimates of
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Fig. 3 Utility based buying prices for an event digital as functions of the agent’s initial capital for various
level of the event intensity when the other parameters of the model are given by (A, R̄, T, γ, a, r, σ ) =
(0, 30, 1, 0.25, 0.1, 0.05, 0.2)

default probabilities to price credit risky securities, while maintaining credit limits with their
different counterparties.

With respect to the temporal resolution of uncertainty, our figure confirms that late res-
olution of uncertainty leads to higher bid/ask spreads. Agents always prefer early to late
resolution of uncertainty since, with incomplete markets, the former allows them to modify
to their advantage their portfolio strategy in response to the event. In that sense, the temporal
resolution of uncertainty affects the investor’s wealth process and therefore is not irrelevant.
Interestingly, willingness to pay for early resolution depends on the agent’s initial capital
since the early and late resolution utility based prices coincide for both low and high levels
of initial capital. As pointed out by [47] the temporal of uncertainty is irrelevant for the pur-
pose of arbitrage pricing. Interestingly this result, which was originally proved in a complete
markets model, extends here to our incomplete markets setting when taking the appropri-
ate concept of almost sure hedging prices. As the agent’s initial capital increases relative to
his position in the claim, the impact of event risk on his wealth becomes negligible. Thus,
the opportunity to readjust his portfolio decision in response to information becomes less
valuable and the difference between early and late resolution utility based prices vanishes.
Quantitatively, the early resolution premium appears small but not insignificant: around 30
basis points at its maximum for a logarithmic utility investor.

5.5 Defaultable bonds

We next investigate the utility based pricing of a defaultable bond which pays $100 at maturity
and has a recovery rate of 50 % in default. In such a case the event time τ represents the time
at which the bond seller defaults on its obligation. Since the utility maximization problems
studied in this paper do not take into account the possibility that the agent who prices the
claim may default, we focus on the utility based buying prices only.5

5 Duffie and Huang [14] and Collin-Dufresne and Hugonnier [1] investigate pricing in the presence of bilateral
counterparty credit risk.
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Fig. 4 Utility based unit buying prices for a defaultable bond as functions of the number of bonds in the portfo-
lio when the parameters of the model are given by (A, R̄, T, γ, a, r, σ ) = (100, 50, 1, 0.25, 1, 0.1, 0.05, 0.2)

Figure 3 graphs the utility based buying price of this defaultable bond as a function of
the agent’s initial capital for various levels of the historical default intensity. As for an event
digital option, we see that the price a logarithmic agent would be willing to pay to buy the
bond is rapidly increasing towards the risk neutral price.6 As the default intensity λ increases,
the risk neutral price (which is independent of wealth) decreases accordingly since the default
probabilities are the same under both the historical and the risk neutral measure and so does
the utility based buying price.

Figure 4 graphs the per unit utility based buying price n → ub(x, n ·e)/n of the defaultable
bond as a function of the position size for various levels of initial capital. For a given position
size the utility based buying price per unit of contingent claim is increasing in the agent’s initial
capital. The figure effectively displays a decreasing inverse demand function for defaultable
bonds for each level of initial capital. Because the financial market faced by the agent does
not allow him to hedge the default event, his demand function is not perfectly elastic and
the price at which he is willing to purchase the defaultable bond is decreasing in the size of
his order. For a given level of initial capital the utility based unit buying price converges to
the risk neutral price as the position size goes to zero. However, the larger the initial capital
the slower the convergence. This obviously contrasts with the traditional complete markets
analysis where inverse demand functions are constant at the no-arbitrage price because the
investor can offset an arbitrary position in the contingent claim by an appropriate hedging
position in marketed securities.

Figure 5 graphs the utility based buying price as a function of the investor’s initial capital
capital for two different levels of expected return on the stock. Although, changing the drift
and hence the risk premium on traded assets does not change the risk neutral and arbitrage
prices of the defaultable bond, Fig. 5 clearly shows that such a modification has an impact
on the corresponding utility based buying price. For a given level of initial capital, the utility
based buying price is a decreasing function of the risk premium on the stock. This is due

6 Since, for logarithmic agents, the late resolution prices provide reasonable approximation of the early
resolution utility based prices we present only graphs for late resolution prices. These are also simpler to
compute.
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Fig. 5 Utility based unit buying prices for a defaultable bond as functions of the agent’s initial capital for
various values of the asset return when the other parameters of the model are given by (A, R̄, T, γ, r, σ ) =
(100, 50, 1, 0.25, 1, 0.05, 0.2)

to a substitution effect: as the drift of the underlying stock price increases the defaultable
bond becomes less interesting compared to the stock itself, and, as a result its utility based
buying price decreases. However, Fig. 5 also shows that the impact of this substitution effect
decreases as the agent’s initial capital increases. The rationale for this is the following: as the
agent’s initial capital increases, the effect of his position in the defaultable bond on his utility
index becomes marginal thus making the substitution effect smaller. As we shall see in the
next section, the impact of a change of drift on the utility based prices may be ambiguous
when the contingent claim’s payoff is state dependent.

5.6 Vulnerable options

In this last section we investigate the utility based pricing of vulnerable call and put options.
In cases where the seller of the option defaults prior to its maturity we assume that the buyer
of the option receives nothing and restrict ourselves to the study of the utility based buying
prices.

Figures 6 graphs the utility based buying price of a call option as a function of the agent’s
initial capital for different moneyness of the option. The figure shows that the convergence
of utility based buying price towards the risk neutral price is somewhat slower as the option
becomes in the money. However, in all cases we see that for reasonable levels of credit
exposure as measured by the ratio of the default free option to the agent’s initial capital, the
utility based buying price of vulnerable options is well approximated by the risk neutral price
computed by taking an expectation of the payoff under the risk neutral measure without risk
adjusting the historical default intensity.

The remaining figures investigate the impact of the drift on the utility based buying prices
of vulnerable options. This seems particularly interesting since one of the major insights
of the contingent claim pricing literature initiated by Merton and Black and Scholes is that
option prices are independent of the drift of the underlying asset price process. In our case, it
is still true that arbitrage pricing (as reflected by the no-arbitrage bounds) is independent of
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Fig. 6 Utility based unit buying prices for a vulnerable call option as functions of the agent’s initial capital
for different exercise prices when the other parameters of the model are given by (S(0), R̄, T, γ, a, r, σ ) =
(100, 0, 1, 0.25, 1, 0.1, 0.05, 0.2)

the drift of the underlying security. However, as the figures clearly show, utility based prices
depend on the drift of the underlying security.

As already mentioned, the impact will not be as clear here as for defaultable bonds since
two different effects may influence prices. First, the substitution effect makes the contingent
claim less interesting compared to the stock as the risk premium on the stock increases. The
second effect is due to the fact that the options’ payoffs depend on the terminal stock price:
as the drift of the underlying stock price process increases, the objective probability that the
put (resp. call) will end up in the money decreases (resp. increases).

For put options the two effect go in the same direction and we thus expect their utility
based prices to decrease when the drift of the underlying stock increases. Figure 7 confirms
this intuition. However, for call option the two effects compensate each other and the net
effect is ambiguous. Figure 8 shows that there are sets of parameters for which the call
option’s utility based buying prices are increasing in the drift of the stock: the ‘payoff’
effect dominates the substitution effect. However, for deep in the money call options, the
substitution effect dominates. The effect of a change in the drift of the underlying asset on
the utility based buying price of the call is therefore undetermined in general and will depend
on the particular parameter choice.

6 Conclusion

We study the utility based pricing of event sensitive contingent claims, defined as securities
whose payoff is contingent on the occurrence of an event that cannot be hedged with standard
marketed securities.

We solve the incomplete market problem of an investor endowed with an ESCC under
two scenarios of resolution of uncertainty. In general, investors with time separable utility
functions are willing to pay a premium for early resolution of uncertainty, because the event
cannot be hedged with marketed securities and thus forces them to self-insure.

123



www.manaraa.com

62 Math Finan Econ (2014) 8:29–69

0 50 100 150

0 00

0 02

0 04

0 06

0 08

0 10

Initial capital

Pr
ic
e

u0 e
ub x e a 0 08
ub x e a 0 20

0 50 100 150

0

2

4

6

8

Initial capital
Pr
ic
e

u0 e
ub x e a 0 08
ub x e a 0 20

Fig. 7 Utility based buying prices for an OTM put (left panel) and an ITM put (right panel) as functions of
the agent’s initial capital for various values of the underlying asset return when the other parameters of the
model are given by (S(0), R̄, T, γ, r, σ ) = (100, 0, 1, 0.25, 1, 0.05, 0.2)
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Fig. 8 Utility based buying prices for an ITM call (left panel) and an OTM call (right panel) as functions of
the agent’s initial capital for various values of the underlying asset return when the other parameters of the
model are given by (S(0), R̄, T, γ, r, σ ) = (100, 0, 1, 0.25, 1, 0.05, 0.2)

We analyze constant absolute risk aversion (CARA) and constant relative risk aversion
(CRRA) utility functions in more detail. For CARA investors we obtain explicit early and late
resolution prices which are independent of wealth. The early resolution premium is constant
and in general non zero, but we discuss a sufficient condition for it to be zero. For CRRA
utility we propose a simple numerical scheme to compute both prices.

We analyze prices of different securities such as event digitals, defaultable bonds and
vulnerable options. The early resolution premium is positive but tends to zero when wealth
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tends to zero or infinity. Interestingly, as the exposure (relative to initial wealth) to the ESCC
becomes small, all prices tend towards a common limit: the risk neutral price, obtained by risk
adjusting all the traded sources of risk while leaving the functional form of the event intensity
unchanged. As our numerical results show, most standard pricing intuition breaks down for
ESCC. For example, we find that vulnerable call options prices can be either increasing or
decreasing in the drift of the underlying depending on the moneyness of the option.

7 Appendix: Proof of Theorem 29

Theorem 29 will be established through a series of Lemmas. Before turning to the actual proof,
we start by fixing some notation that will be useful later on. Recall that the zero-coupon price
process D is defined by

D(t) � Et

(
H0(T )

H0(T )

)
≡ E0

t

(
D0(T )

D0(t)

)
. (70)

Taking into account the positivity and boundedness of the discount factor and applying
the representation theorem to the martingale H0 D we have that there is an F-progressively
measurable, square integrable process ϑ such that

D(t) − D(0) =
t∫

0

D(s)
(
r(s)ds + ϑ(s)∗ [d B(s) + ξ(s)ds]

)
. (71)

Combining this expression with the definition of the forward probability measure and apply-
ing Girsanov theorem, it follows that process

B̃(t) � W (t) −
t∫

0

ϑ(s)ds ≡ B(t) +
t∫

0

(ξ(s) − ϑ(s)) ds (72)

is a standard Brownian motion under the forward probability measure. Using this in con-
junction with (54), the definition of H0 and the boundedness of the model coefficients and
applying Itô’s representation theorem under the forward probability measure we obtain that
there is an F-progressively measurable and square integrable (under the forward probability
measure) process ϕ such that

d

(
Z(t)

D(t)

)
= d

(
D(t)−1 · E0

t

(
D0(T )

D0(t)
log

H0(T )

H0(t)

))
= d

(
Ẽt log

H0(T )

H0(t)

)

= ϕ(t)∗d B̃(t) + (
r(t) − 1

2 ‖ξ(t)‖2 + ϑ(t)∗ξ(t)
)

dt. (73)

After these preparations, we are now ready to begin our proof of Theorem 29. Let now Q be
an arbitrary but fixed non negative, bounded process with terminal value equal to A and for
each admissible trading strategy θ set

Vθ (t) � �(t)V0
(
t, X x,θ (t) + D(t)Q(t)

) −
t∫

0

V0
(
s, X x,θ (s) + R(s)

)
d�(s)

where R(·) is the replicating value process associated with the event insensitive contingent
claim R̄ and where V0(·) is defined as in (56).
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Lemma 7.1 For each admissible trading strategy θ ∈ �0, the process Vθ is uniformly
bounded from below by an integrable random variable.

Proof Combining Jensen’s inequality with (73), the convexity of the function exp(·) and the
definition of the forward probability measure we get that

D(t) · exp

(
− Z(t)

D(t)

)
≤ D(t) · Ẽt exp

(
− log

H0(T )

H0(t)

)
= 1

holds almost surely for every t ∈ [0, T ]. Plugging this estimate back into the definition of Vθ

and using the boundedness of the processes (λ,�, D, R, Q) it is now easily seen that there
are non negative constants Ci such that

−Vθ (t) ≤ C1 · exp

(
−γ

X x,θ (t)

D(t)

)
+

t∫

0

C2 · exp

(
−γ

X x,θ (s)

D(s)

)
ds

≤ C1 · exp

(
−γ inf

t∈[0,T ]
X x,θ (t)

D(t)

)
+ C3 · exp

(
−γ inf

t∈[0,T ]
X x,θ (s)

D(s)

)
· T .

By definition of the class �0 of admissible trading strategies the negative random variable
on the right hand side of the above expression is integrable under the objective probability
measure and our proof is complete. �

Let now (�,μ) denote respectively the volatility and the drift of the unknown process
Q under the objective probability measure. Using the definition of the no-contingent claim
value function in (56) and applying Itô’s lemma we obtain (after simplification) that for an
arbitrary trading strategy

dWθ (t) � dV0
(
t, X x,θ (t) + D(t)Q(t)

)

= Wθ (t)
(
ϑ(t) − γ θ̂(t) − ϕ(t) − γ�(t)

)∗
dB(t)

+ 1

2
Wθ (t)

∥∥γ θ̂(t) + ϕ(t) + γ�(t) − ξ(t)
∥∥2

dt

− γ Wθ (t)
(
μ(t) + �(t)∗ (ϑ(t) − ξ(t))

)
dt,

where we have set θ̂ := (σ ∗θ − X x,θϑ)/D. Plugging this back into the definition of the
process Vθ and applying Itô’s lemma once again we finally obtain that for an arbitrary trading
strategy the dynamics of the process Vθ are given by

dVθ (t) = d (�(t)Wθ (t)) + λ(t)�(t)Wθ (t) exp (γ · [Q(t) − R(t)/D(t)]) dt

= �(t)Wθ (t)
(
ϑ(t) − γ θ̂(t) − ϕ(t) − γ�(t)

)∗
dB(t)

+ 1

2
�(t)Wθ (t)

∥∥γ θ̂(t) + ϕ(t) + γ�(t) − ξ(t)
∥∥2

dt

− γ�(t)Wθ (t)
(
μ(t) + �(t)∗ (ϑ(t) − ξ(t))

)
dt

− λ(t)�(t)Wθ (t)
(

1 − eγ ·[Q(t)−R(t)/D(t)]) dt.

Using the above expression in conjunction with Lemma 7.1, the fact that a local martingale
which is uniformly bounded from below is a supermartingale and the negativity of the process
Wθ , it is now easily seen that if the coefficients of the unknown process are such that

μ(t) = �(t)∗ (ξ(t) − ϑ(t)) − λ(t)

γ

(
1 − eγ ·[Q(t)−R(t)/D(t)])
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then the process Vθ is a supermartingale for every admissible trading strategy and a martingale
for the optimal trading strategy defined implicitly by

θ̂∗(t) � −�(t) + (1/γ ) · (ξ(t) − ϕ(t)) . (74)

In order to complete the first part of the proof of Theorem 29 we therefore have to establish
that

(i) there exists a non negative, bounded process with terminal value equal to A almost surely
and whose coefficients verify the above restriction,

(ii) that the candidate optimal trading strategy defined implicitly by (74) indeed belongs to
the set �0 of admissible trading strategies.

Before establishing these we start by observing that thanks to (71) and the definition of
the forward probability measure, (i) above is equivalent to the existence of a non negative,
bounded process with terminal value A whose dynamics are given by

− dQ(t) = λ(t)

γ

(
1 − eγ ·[Q(t)−R(t)/D(t)]) dt − �(t)∗dB̃(t) (75)

where B̃ is an n-dimensional standard Brownian motion under the forward measure. Such
equations are known in the literature as Backward Stochastic Differential Equations and have
been extensively studied in the past years (see [35] for references).

In the following statement we say that the pair (�, Q) of adapted processes is a maximal
solution to the backward equation if its trajectory dominates that of any other solution.

Lemma 7.2 Let (A, R̄) be non negative, bounded random variables and R be defined by
(36). Then the backward stochastic differential Eq. (75) admits a maximal solution (�, Q)

whose trajectory is non negative and bounded.

Proof Using Lemma 5 in conjunction with (71) and applying Itô’s lemma, we have that there
is an F-progressively measurable process ρ such that

d(R(t)/D(t)) = −ρ(t)∗ (dB(t) + [ξ(t) − ϑ(t)] dt) = −ρ(t)∗d B̃(t), (76)

where the last equality follows from the definition of the process B̃ in (72). Combining this
with the fact that the terminal value of D is equal to one, it is now easily seen that the result
of the lemma will follow once we have established that the backward stochastic differential
equation

− d Q̄(t) = λ(t)

γ

(
1 − eγ Q̄(t)

)
dt − �̄(t)∗d B̃(t) (77)

with terminal condition equal to A − R̄ admits a maximal bounded solution whose trajectory
dominates that of the non positive process −R/D. To this end, we start by observing that
because of the boundedness of λ we have

| f (t, ω, x)| �
∣∣∣ λ(t)

γ

(
1 − eγ x)∣∣∣ ≤ C · ∣∣1 − eγ x

∣∣ � (x),

for some non negative constant C . Straightforward computations using the definition of the
non negative function  then show that the pair of (ordinary) backward differential equations
given by
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A1(t) = a1 −
T∫

t

 (A1(s)) ds

A2(t) = a2 +
T∫

t

 (A2(s)) ds

admit bounded global solutions for every a1 ≤ 0 ≤ a2 and the existence of a maximal
bounded solution to the backward stochastic differential equation (77) now follows from
[41, Theorem 1]).

In order to complete the proof, we are only left to show that the trajectory of this maximal
solution dominates that of the process −R/D but this easily follows from the negativity
of the latter process, the fact that its terminal condition is dominated by that of Q̄ and the
comparison theorem for backward stochastic differential equations (see [41, Corollary 2] or
[35, Theorem 2.5]). �

Let now θ̂∗ be defined by (74) and denote by θ∗ the corresponding candidate optimal
trading strategy. Using (72) in conjunction with the dynamics of the zero-coupon bond price
process given by (71) and applying Itô’s lemma we get

d

(
X x,θ∗(t)

D(t)

)
� d X∗(t) = θ̂ (t)∗d B̃(t) =

(
1
γ
ξ(t) − 1

γ
ϕ(t) − �(t)

)∗
d B̃(t).

Comparing the previous expression with the dynamics of the processes Q, Z/D and log H0

it follows that the candidate optimal wealth process is given by

X x,θ∗(t)

D(t)
= (Q(0) − Q(t)) − 1

γ
Z(t) +

(
x + 1

γ
Z(0)

) 1

D(0)

− 1

γ

⎛
⎝log H0(t) +

t∫

0

λ(s)
{

1 − eγ ·[Q(s)−R(s)/D(s)]} ds

⎞
⎠.

Using the boundedness of the three dimensional process (D, R/D, Q) in conjunction with
the definition of the process Z/D and of the forward probability measure, it is now easily
seen that there are non negative constants Ki such that we have

−
(

K1 + inf
t∈[0,T ]

X x,θ∗(t)

D(t)

)
≤ sup

t∈[0,T ]
1

γ

(
log H0(t) + Z(t)

D(t)

)

≤ sup
t∈[0,T ]

E0
t

(
K2 D0(T )

γ
log+ H0(T )

)
� −X (ω).

The process D being bounded, it follows that in order to complete the proof of (ii) it is suffi-
cient to show that the random variable X belongs to the space L and is such that exp(−γ X) is
integrable under the objective probability measure. To establish the first property we observe
that there are non negative constants Ci such that

E0|X |p ≤ C1 · E0 sup
t∈[0,T ]

(
E0

t log+ H0(T )
)p ≤ C1 · E0 (

log+ H0(T )
)p

≤ C1 · E0 | log H0(T )|p ≤ C2 + C3 · E0

∣∣∣∣∣∣

T∫

0

ξ(t)∗dW (t)

∣∣∣∣∣∣

p
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where the first inequality follows from non negativity of the interest rate process, the second
from Doob’s maximal inequality and the fourth from the definition of the state price density
H0 in conjunction with the boundedness of the processes r and ξ . Using Burkholder–Davis–
Gundy inequality we then get that

E0

∣∣∣∣∣∣

T∫

0

ξ(t)∗dW (t)

∣∣∣∣∣∣

p

≤ C4 · E0

∣∣∣∣∣∣

T∫

0

‖ξ(t)‖2 ds

∣∣∣∣∣∣

p
2

,

holds for some non negative constant C4 and conclude that the random variable X belongs to
the space L . To establish the second property we observe that there are non negative constant
C5 and C6 such that

exp (−γ X) C5 ≤ sup
t∈[0,T ]

exp
(

E0
t D0(T ) log+ H0(T )

)

≤ sup
t∈[0,T ]

E0
t exp

(
D0(T ) log+ H0(T )

)

≤ sup
t∈[0,T ]

E0
t exp

(
log+ H0(T )

) ≤ sup
t∈[0,T ]

(
1 + E0

t H0(T )
)

≤ sup
t∈[0,T ]

(
1 + E0

t Z0(T )
) ≤ sup

t∈[0,T ]
(1 + C6 · Z0(t)) ,

where the second inequality follows Jensen’s inequality, the third and fifth from the non
negativity of the interest rate and the sixth from the definition of the process Z0 and the
boundedness of ξ . Using the latter property once again we obtain that the random variable
on the right hand side is integrable under the objective probability measure and conclude that
θ∗ is indeed optimal for the agent’s utility maximization problem.

In order to complete the proof of Theorem 29 we are now only left to show that as the
agent’s absolute risk aversion goes to zero the utility based buying price D(0)Q(0) converges
to the risk neutral price

u0(e) = E0 (
D0(T )A1{τ>T } + D0(T )R̄1{τ≤T }

)

= D(0)Ẽ
(
�(T )A + (1 − �(T ))R̄

)
.

Equivalently, we need to show that as γ goes to zero, the initial value Q̄(0) ≡ Q̄γ (0) of the
maximal solution to the backward stochastic differential equation (77) converges to the initial
value of the unique solution to the backward stochastic differential equation with dynamics

− dY (t) = −λ(t)Y (t)dt − H(t)∗d B̃(t), (78)

and terminal value A − R̄. Observing that −x ≤ (1 − eγ x )/γ := g(γ, x) and applying the
comparison theorem for backward stochastic differential equations, we obtain that Q̄γ (t) ≥
Y (t) holds almost everywhere for all non negative γ . Taking into account the fact that these
two processes have the same terminal value and using their respective dynamics (77)–(78),
we then get that

0 ≤ Q̄γ (0) − Y (0) = Ẽ

T∫

0

λ(t)
(
Y (t) + g

(
γ, Q̄γ (t)

))
dt

≤ Ẽ

T∫

0

λ(t) (Y (t) + g (γ, Y (t))) dt,
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where the inequality follows from the decrease of g(γ, ·). Letting the agent’s absolute risk
aversion go to zero on both sides of the previous expression and using the fact that

lim
γ→0

−g(γ, Y (t)) = Y (t),

in conjunction with the boundedness of (λ, Y ) (recall that the random variables (A, R̄) are
assume to be bounded) we conclude that limγ→0 Q̄γ (0) = Y (0) and our proof is complete.
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